Abstract

Cultivated meat produced with primary muscle satellite cells (SCs) will need a continuous supply of isolated cell material from relevant animal donors. Factors such as age, sex, and breed, along with the sustainability and availability of donor animals, could determine the most appropriate donor type for an efficient production. In this study, we focus on the proliferation and differentiation of bovine SCs isolated from bull calf and dairy cow muscle samples. The proliferative performance of bull calf SCs was significantly better than SCs from dairy cows, however a dynamic differentiation assay revealed that the degree of fusion and formation of myotubes were similar between donor types. Furthermore, the proliferation of SCs from both donor types was enhanced using an in-house developed serum-free media compared to 10% FBS, which also delayed myogenic differentiation and increased final cell population density. Using gene chip transcriptomics, we identified several differentially expressed genes between the two donor types, which could help explain the observed cellular differences. This data also revealed a high biological variance between the three replicate animals within donor type, which seemed to be decreased when using our in-house serum-free media. With the use of the powerful imaging modalities of Cytation 5, we developed a novel high contrast brightfield-enabled label-free myotube quantification method along with a more efficient end-point fusion analysis using Phalloidin-staining. The results give new insights into the bovine SC biology and potential use of bull calves and dairy cows as relevant donor animals for cultivated beef cell sourcing. The newly developed differentiation assays will further enhance future research within the field of cultivated meat and SC biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.