Abstract

The aerosol forcing is an essential factor of global climate change, which can be estimated by various models. However, the model results ranging from −2.8 to 2.2 K remain controversial because of unavoidable uncertainty, leaving a great gap for global change prediction. This study aims to evaluate the forcing on the land surface temperature (Ts) using satellite-based observations. Based on the Blackbody radiation and surface radiation budget, first, a semi-physical framework is developed to estimate the Ts. Subsequently, the aerosol forcing is calculated by measuring the Ts difference between the changing aerosol scenario and baseline scenario with a fixed aerosol amount. Results show that the framework simulates Ts with acceptable accuracy (R = 0.62 and RMSE = 1.48 K), which supports the estimation of aerosol forcing. Generally, the change in the aerosol contributes 0.005 ± 0.237 K to the global Ts, which presents significant temporal and spatial variabilities. Temporally, the forcing shows a decreasing trend of −0.0006 K/year (R2 = 0.29, p = 0.031). Spatially, the forcing tends to warm the surface in regions with arid climate, low-cloud fraction, and moderate vapor or in sparsely vegetated and cool regions because of the potential interactions with climatic and environmental factors. The result of this study helps to reduce the uncertainty and validate the model results, which further supports the research on global climatic and environmental change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.