Abstract

AbstractRunoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.