Abstract

Burnings, which cause major changes to the environment, can be effectively monitored via satellite data, regarding both the identification of active fires and the estimation of burned areas. Among the many orbital sensors suitable for mapping burned areas on global and regional scales, the moderate resolution imaging spectroradiometer (MODIS), on board the Terra and Aqua platforms, has been the most widely utilized. In this study, the performance of the MODIS MCD45A1 burned area product was thoroughly evaluated in the Brazilian savanna, the second largest biome in South America and a global biodiversity hotspot, characterized by a conspicuous climatic seasonality and the systematic occurrence of natural and anthropogenic fires. Overall, September MCD45A1 polygons (2000–2012) compared well to the Landsat-based reference mapping (r2=0.92) and were closely accompanied, on a monthly basis, by MOD14 and MYD14 hotspots (r2=0.89), although large omissions errors, linked to landscape patterns, structures, and overall conditions depicted in each reference image, were observed. In spite of its spatial and temporal limitations, the MCD45A1 product proved instrumental for mapping and understanding fire behavior and impacts on the Cerrado landscapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call