Abstract

The paper presents three-dimensional (3-D) attitude stabilization of a geosynchronous satellite. The solar radiation pressure is considered for the satellite pitch and roll stabilization while the yaw attitude is stabilized by a magnetotorquer. The general formulation of the system comprised of a satellite body, two solar flaps, and a magnetotorquer is obtained through Euler's equations. The linearized system model is derived and then the control laws are developed for suitable rotations of solar flaps and variations in magnetic moment. The numerical simulation of the governing nonlinear system equations of motion establishes the feasibility of achieving the desired 3-D satellite attitude. The controllers are successful in stabilizing the satellite attitude even in the presence of orbital eccentricity and variations in system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.