Abstract

How hematopoietic stem cells coordinate the regulation of opposing cellular mechanisms like self-renewal and differentiation commitment remains unclear. Here, we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of the hematopoietic stem cell (HSC) fate. HSCs lacking Satb1 displayed defective self-renewal, less quiescence and accelerated lineage commitment, resulting in progressive depletion of functional HSCs. Increased commitment was caused by reduced symmetric self-renewal and increased symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed gene sets involved in HSC activation and cellular polarity, including Numb and Myc, two key factors for stem cell fate specification. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.