Abstract

Abstract Tertiary Lymphoid Structures (TLS) are commonly identified in human tumors with improved outcome, but how they are orchestrated remains elusive. Here we show that silencing of the master genomic organizer Satb1 results in enhanced antigen-specific T Follicular Helper (TFH) differentiation. Increased TFH thereby promoted antigen-specific intra-tumoral CD19+B220+ B cell responses and spontaneous TLS assembly upon ovarian tumor challenge. Mechanistically, Satb1 deficiency drives increased TFH formation through de-repression of ICOS and PD-1. Accordingly, TGF-β1-driven downregulation of Satb1 licenses activated human CD4+ T-cells for enhanced antigen-specific T Follicular Helper (TFH) differentiation. Furthermore, Satb1 deficiency abrogates the generation of PD-1highCXCR5+Foxp3+ T Follicular Regulatory (TFR) cells during the TFH differentiation process. Importantly, functional TFH cell accumulation, in the absence of Satb1 specifically in CD4+ T cells, resulted in corresponding isotype-switched B cell responses and spontaneous formation of TLS, while B cell depletion accelerated malignant progression. Our results indicate that the formation of TLS in cancer depends on enhanced B cell responses driven by TFH cells generated through Satb1 down-regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.