Abstract

Abstract Disclosure: V. Ubba: None. S. joseph: None. R. Akbar: None. M. Dsilva: None. S. Wu: None. Polycystic ovarian syndrome (PCOS) is a leading cause of infertility in women of reproductive age. Mostly, the level of androgens are deviated from their physiological values in females, resulting in hyperandrogenemia. Androgen manifests its function in the cells via the Androgen Receptor (AR), making it a prime factor for studying PCOS pathophysiology. We generated central nervous system (CNS) specific AR knockout mouse (SynARKO), using synapsin promoter driven cre, to examine its role under normal and hyperandrogenemic conditions in female mice. Assessment of reproductive parameters under physiological levels of androgens, revealed no differences in the cyclicity and fertility of SynARKO mice when compared to Control (Con-veh) mice. These parameters were altered under hyperandrogenemia (induced using DHT) in Control mice (Con-DHT) mice and were not rescued in the SynARKO- DHT mice, suggesting CNS AR is dispensable to reproductive features in females. Evaluation of metabolic functions by Glucose tolerance test, we observed alleviated glucose intolerance in SynARKO-DHT (4 months). Energy expenditure and food intake were increased in Con-DHT mice compared to Con-veh, while showing no further differences in SynARKO-DHT mice compared to SynARKO-veh. At the molecular level, DHT treatment showed increased phosphorylated Akt in hypothalamus of control mice. Interestingly, it was restored in synARKO upon DHT treatment. Further, the inflammation marker, phosphorylated NF-kB p-65, was increased in the hypothalamus of Con-DHT mice. Additionally, IBA, a marker of macrophage activation was also increased upon DHT treatment in control mice. Taken together, our results suggest that while the reproductive functions are not mediated by the CNS AR, metabolic effects caused by hyperandrogenemia, is regulated by the central nervous system AR. Presentation Date: Saturday, June 17, 2023

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.