Abstract
Scheduling algorithms play an important role for TDMA-based wireless sensor networks. Existing TDMA scheduling algorithms address a multitude of objectives. However, their adaptation to the dynamics of a realistic wireless sensor network has not been investigated in a satisfactory manner. This is a key issue considering the challenges within industrial applications for wireless sensor networks, given the time-constraints and harsh environments. In response to those challenges, we present SAS-TDMA, a source-aware scheduling algorithm. It is a cross-layer solution which adapts itself to network dynamics. It realizes a trade-off between scheduling length and its configurational overhead incurred by rapid responses to routes changes. We implemented a TDMA stack instead of the default CSMA stack and introduced a cross-layer for scheduling in TOSSIM, the TinyOS simulator. Numerical results show that SAS-TDMA improves the quality of service for the entire network. It achieves significant improvements for realistic dynamic wireless sensor networks when compared to existing scheduling algorithms with the aim to minimize latency for real-time communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.