Abstract

In this paper inkjet-shaped barium-titanate thin films were examined by SEM, AFM and optical microscopy, along with XRD and Raman spectroscopy in order to study effects of drying chemical additives, ink concentration and printing parameters on microstructure and phase composition. Inkjet printing is a very attractive way of shaping functional materials. Simple setup, low-cost, digital control and the possibility of obtaining complex forms without post-processing make this technique highly competitive for application in microelectronics. The most common way of preparing inks via powder dispersion involves high-temperature treatment (900 °C and above) in order to achieve dense and uniform structure. Thus, we utilized an energy efficient sol–gel approach where the final phase composition is achieved in situ on the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call