Abstract

RNA-seq data analysis relies on many different tools, each tailored to specific applications and coming with unique assumptions and restrictions. Indeed, tools for differential transcript usage, or diagnosing patients with rare diseases through splicing and expression outliers, either lack in performance, discard information, or do not scale to massive data compendia. Here, we show that replacing the normalisation offsets unlocks bulk RNA-seq workflows for scalable differential usage, aberrant splicing and expression analyses. Our method, saseR, is much faster than state-of-the-art methods, dramatically outperforms these to detect aberrant splicing, and provides a single workflow for various short- and long-read RNA-seq applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.