Abstract
Protein functions are tightly related to the fine details of their 3D structures. To understand protein structures, computational prediction approaches are highly needed. Recently, protein structure prediction has achieved considerable progresses mainly due to the increased accuracy of inter-residue distance estimation and the application of deep learning techniques. Most of the distance-based ab initio prediction approaches adopt a two-step diagram: constructing a potential function based on the estimated inter-residue distances, and then build a 3D structure that minimizes the potential function. These approaches have proven very promising; however, they still suffer from several limitations, especially the inaccuracies incurred by the handcrafted potential function. Here, we present SASA-Net, a deep learning-based approach that directly learns protein 3D structure from the estimated inter-residue distances. Unlike the existing approach simply representing protein structures as coordinates of atoms, SASA-Net represents protein structures using pose of residues, i.e., the coordinate system of each individual residue in which all backbone atoms of this residue are fixed. The key element of SASA-Net is a spatial-aware self-attention mechanism, which is able to adjust a residue's pose according to all other residues' features and the estimated distances between residues. By iteratively applying the spatial-aware self-attention mechanism, SASA-Net continuously improves the structure and finally acquires a structure with high accuracy. Using the CATH35 proteins as representatives, we demonstrate that SASA-Net is able to accurately and efficiently build structures from the estimated inter-residue distances. The high accuracy and efficiency of SASA-Net enables an end-to-end neural network model for protein structure prediction through combining SASA-Net and an neural network for inter-residue distance prediction. Source code of SASA-Net is available at https://github.com/gongtiansu/SASA-Net/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.