Abstract

We define a contact metric structure on the manifold corresponding to a second order ordinary differential equation $d^2y/dx^2=f(x,y,y')$ and show that the contact metric structure is Sasakian if and only if the 1-form $\frac{1}{2}(dp-fdx)$ defines a Poisson structure. We consider a Hamiltonian dynamical system defined by this Poisson structure and show that the Hamiltonian vector field, which is a multiple of the Reeb vector field, admits a compatible bi-Hamiltonian structure for which $f$ can be regarded as a Hamiltonian function. As a particular case, we give a compatible bi-Hamiltonian structure of the Reeb vector field such that the structure equations correspond to the Maurer-Cartan equations of an invariant coframe on the Heisenberg group and the independent variable plays the role of a Hamiltonian function. We also show that the first Chern class of the normal bundle of an integral curve of a multiple of the Reeb vector field vanishes iff $f_x+ff_p = \Psi (x)$ for some $\Psi$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call