Abstract

Background and objectiveLiver segmentation is an essential prerequisite for liver cancer diagnosis and surgical planning. Traditionally, liver contour is delineated manually by radiologist in a slice-by-slice fashion. However, this process is time-consuming and prone to errors depending on radiologist's experience. In this paper, a modified U-Net based framework is presented, which leverages techniques from Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASPP) and residual learning for accurate and robust liver Computed Tomography (CT) segmentation, and the effectiveness of the proposed method was tested on two public datasets LiTS17 and SLiver07. MethodsA new network architecture, called SAR-U-Net was designed, which is grounded in the classical U-Net. Firstly, the SE block is introduced to adaptively extract image features after each convolution in the U-Net encoder, while suppressing irrelevant regions, and highlighting features of specific segmentation task; Secondly, the ASPP is employed to replace the transition layer and the output layer, and acquire multi-scale image information via different receptive fields. Thirdly, to alleviate the gradient vanishment problem, the traditional convolution block is replaced with the residual structures, and thus prompt the network to gain accuracy from considerably increased depth. ResultsIn the LiTS17 database experiment, five popular metrics were used for evaluation, including Dice coefficient, VOE, RVD, ASD and MSD. Compared with other closely related models, the proposed method achieved the highest accuracy. In addition, in the experiment of the SLiver07 dataset, compared with other closely related models, the proposed method achieved the highest segmentation accuracy except for the RVD. ConclusionAn improved U-Net network combining SE, ASPP, and residual structures is developed for automatic liver segmentation from CT images. This new model shows a great improvement on the accuracy compared to other closely related models, and its robustness to challenging problems, including small liver regions, discontinuous liver regions, and fuzzy liver boundaries, is also well demonstrated and validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call