Abstract

Despite the significant physical differences between magnetic resonance imaging (MRI) and computed tomography (CT), the high entropy of MRI data indicates the existence of a surjective transformation from MRI to CT image. However, there is no specific optimization of the network itself in previous MRI/CT translation works, resulting in mistakes in details such as the skull margin and cavity edge. These errors might have moderate effect on conventional radiotherapy, but for boron neutron capture therapy (BNCT), the skin dose will be a critical part of the dose composition. Thus, the purpose of this work is to create a self-attention network that could directly transfer MRI to synthetical computerized tomography (sCT) images with lower inaccuracy at the skin edge and examine the viability of magnetic resonance (MR)-guided BNCT. A retrospective analysis was undertaken on 104 patients with brain malignancies who had both CT and MRI as part of their radiation treatment plan. The CT images were deformably registered to the MRI. In the U-shaped generation network, we introduced spatial and channel attention modules, as well as a versatile "Attentional ResBlock," which reduce the parameters while maintaining high performance. We employed five-fold cross-validation to test all patients, compared the proposed network to those used in earlier studies, and used Monte Carlo software to simulate the BNCT process for dosimetric evaluation in test set. Compared with UNet, Pix2Pix, and ResNet, the mean absolute error (MAE) of self-attention ResUNet (SARU) is reduced by 12.91, 17.48, and 9.50HU, respectively. The "two one-sided tests" show no significant difference in dose-volume histogram (DVH) results. And for all tested cases, the average 2%/2mm gamma index of UNet, ResNet, Pix2Pix, and SARU were 0.96±0.03, 0.96±0.03, 0.95±0.03, and 0.98±0.01, respectively. The error of skin dose from SARU is much less than the results from other methods. We have developed a residual U-shape network with an attention mechanism to generate sCT images from MRI for BNCT treatment planning with lower MAE in six organs. There is no significant difference between the dose distribution calculated by sCT and real CT. This solution may greatly simplify the BNCT treatment planning process, lower the BNCT treatment dose, and minimize image feature mismatch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.