Abstract
AbstractCoronavirus disease 2019 (COVID‐19) has significantly impacted human health, the global economy, and society. Viruses residing on common surfaces represent a potential source of contamination for the general population. Spike binding peptide 1, SBP1 is a 23 amino acid peptide, which has micromolar binding affinity (1.3 μM) towards the spike protein receptor‐binding domain. We hypothesize that if we can covalently immobilize this SBP1 peptide in a covalent crosslinked network system, we can develop a surface that would preferentially bind spike protein and, therefore, which could limit viral spread. A series of covalently crosslinked networks of hydroxy ethyl acrylate (HEA) with different primary chain lengths and crosslinker density was prepared. Later, this network system was functionalized using 2% SBP1 peptide. Our study found that with a shorter chain length and lower crosslinker density, the HEA network system alone could capture almost 80% of the spike protein. We reported that the efficiency could be enhanced almost by 17% with higher crosslinker density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Polymer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.