Abstract

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a novel infectious respiratory disease called COVID-19, which is threatening public health worldwide. SARS-CoV-2 spike proteins connect to the angiotensin converting enzyme 2 (ACE2) receptor through the receptor binding domain and are then activated by the transmembrane protease serine subtype 2 (TMPRSS2). The ACE2 receptor is highly expressed in human nasal epithelial cells. Nasal ciliated cells are primary targets for SARS-CoV-2 replication. However, the effect of SARS-CoV-2 on the upper respiratory tract remains unknown, thus leading to the purpose of our study. We investigate the effects of SARS-CoV-2 on cytokines and mucin expression in human nasal epithelial cells. Methods We investigated the effects of the SARS-CoV-2 spike protein receptor binding domain (RBD) on cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B expression via real-time PCR, ELISA, periodic acid-Schiff (PAS) staining, and immunofluorescence staining in cultured human nasal epithelial cells. Results The mRNA expression and protein production of cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B were increased by SARS-CoV-2 spike protein RBD. ACE2 receptor inhibitor suppressed the expression of cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B induced by SARS-CoV-2 spike protein RBD. Conclusions SARS-CoV-2 induced cytokines (IL-1β, IL-6, and IL-8) and MUC5AC/5B expression through the ACE 2 receptor in human nasal epithelial cells. Therefore, ACE2 receptor inhibitors can be an effective therapeutic option for SARS-CoV-2 infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call