Abstract

Conventional SARS-CoV-2 surveillance based on genotyping of clinical samples is characterized by challenges related to the available sequencing capacity, population sampling methodologies, and is time, labor, and resource-demanding. Wastewater-based variant surveillance constitutes a valuable supplementary practice, since it does not require extensive sampling, and provides information on virus prevalence in a timely and cost-effective manner. Consequently, we developed a sensitive real-time RT-PCR-based approach that exclusively amplifies and quantifies SARS-CoV-2 genomic regions carrying the S:Δ69/70 deletion, indicative of the Omicron BA.1 variant, in wastewater. The method was incorporated in the analysis of composite daily samples taken from the main Wastewater Treatment Plant of Thessaloniki, Greece, from 1 December 2021. The applicability of the methodology is dependent on the epidemiological situation. During Omicron BA.1 global emergence, Thessaloniki was experiencing a massive epidemic wave attributed solely to the Delta variant, according to genomic surveillance data. Since Delta does not possess the S:Δ69/70, the emergence of Omicron BA.1 could be monitored via the described methodology. Omicron BA.1 was detected in sewage samples on 19 December 2021 and a rapid increase of its viral load was observed in the following 10-day period, with an estimated early doubling time of 1.86 days. The proportion of the total SARS-CoV-2 load attributed to BA.1 reached 91.09 % on 7 January, revealing a fast Delta-to-Omicron transition pattern. The detection of Omicron BA.1 subclade in wastewater preceded the outburst of reported (presumable) Omicron cases in the city by approximately 7 days. The proposed wastewater surveillance approach based on selective PCR amplification of a genomic region carrying a deletion signature enabled rapid, real-time data acquisition on Omicron BA.1 prevalence and dynamics during the slow remission of the Delta wave. Timely provision of these results to State authorities readily influences the decision-making process for targeted public health interventions, including control measures, awareness, and preparedness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call