Abstract

Men are disproportionately affected by the coronavirus disease-2019 (COVID-19), and face higher odds of severe illness and death compared to women. The vascular effects of androgen signaling and inflammatory cytokines in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated endothelial injury are not defined. We determined the effects of SARS-CoV-2 spike protein-mediated endothelial injury under conditions of exposure to androgen dihydrotestosterone (DHT) and tumor necrosis factor-a (TNF-α) and tested potentially therapeutic effects of mineralocorticoid receptor antagonism by spironolactone. Circulating endothelial injury markers VCAM-1 and E-selectin were measured in men and women diagnosed with COVID-19. Exposure of endothelial cells (ECs) in vitro to DHT exacerbated spike protein S1-mediated endothelial injury transcripts for the cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 and anti-fibrinolytic PAI-1 (p < 0.05), and increased THP-1 monocyte adhesion to ECs (p = 0.032). Spironolactone dramatically reduced DHT+S1-induced endothelial activation. TNF-α exacerbated S1-induced EC activation, which was abrogated by pretreatment with spironolactone. Analysis from patients hospitalized with COVID-19 showed concordant higher circulating VCAM-1 and E-Selectin levels in men, compared to women. A beneficial effect of the FDA-approved drug spironolactone was observed on endothelial cells in vitro, supporting a rationale for further evaluation of mineralocorticoid antagonism as an adjunct treatment in COVID-19.

Highlights

  • Utilizing molecular and functional assays, we demonstrated that SARS-CoV-2 S1 exacerbated endothelial injury in the presence of DHT and tumor necrosis factor-α (TNF-α) in vitro, and this was abrogated by the mineralocorticoid receptor antagonist spironolactone

  • We investigated the effect of exposure to the S1 subunit of SARS-CoV-2 (S1) on endothelial injury in vitro by screening quantitative transcript expression levels of cell surface adhesion proteins [E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1)] and anti-fibrinolytic/fibrinolytic markers

  • Further validation in human samples from patients hospitalized to the cultured endothelial cells (ECs), which was shown to be increased in the setting of S1 exposure of the with COVID-19 infection showed that circulating endothelial injury markers VCAM-1 and

Read more

Summary

Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a new and rapidly mutating virus causing the COVID-19 pandemic, affecting millions of people globally. SARS-CoV-2 invades human cells by utilizing angiotensin-converting enzyme 2 (ACE2) as a cognate receptor, after being primed by transmembrane protease serine 2 (TMPRSS2), an androgen regulated gene [1,2]. SARS-CoV2 infection is attenuated by anti-ACE2 antibodies, while SARS-CoV infection is enhanced in mice overexpressing ACE2 [3,4]. TMPRSS2 knockout mice show reduced SARS-CoV replication and milder lung damage, implying critical roles of ACE2 and TMPRSS2 in SARS coronavirus infection [5,6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.