Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV–2) has led to the coronavirus disease 2019 (COVID–19) pandemic, severely affecting public health and the global economy. Adaptive immunity plays a crucial role in fighting against SARS–CoV–2 infection and directly influences the clinical outcomes of patients. Clinical studies have indicated that patients with severe COVID–19 exhibit delayed and weak adaptive immune responses; however, the mechanism by which SARS–CoV–2 impedes adaptive immunity remains unclear. Here, by using an in vitro cell line, we report that the SARS–CoV–2 spike protein significantly inhibits DNA damage repair, which is required for effective V(D)J recombination in adaptive immunity. Mechanistically, we found that the spike protein localizes in the nucleus and inhibits DNA damage repair by impeding key DNA repair protein BRCA1 and 53BP1 recruitment to the damage site. Our findings reveal a potential molecular mechanism by which the spike protein might impede adaptive immunity and underscore the potential side effects of full-length spike-based vaccines.

Highlights

  • Severe acute respiratory syndrome coronavirus 2 (SARS–CoV–2) is responsible for the ongoing coronavirus disease 2019 (COVID–19) pandemic that has resulted in more than 2.3 million deaths

  • SARS–CoV–2 proteins are synthesized in the cytosol [1], some viral proteins are detectable in the nucleus, including Nsp1, Nsp5, Nsp9, Nsp13, Nsp14, and Nsp16 [19]

  • We investigated whether these nuclear-localized SARS–CoV–2 proteins affect the host cell DNA damage repair system

Read more

Summary

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS–CoV–2) is responsible for the ongoing coronavirus disease 2019 (COVID–19) pandemic that has resulted in more than 2.3 million deaths. SARS–CoV–2 is an enveloped single positive–sense RNA virus that consists of structural and non–structural proteins [1]. After infection, these viral proteins hijack and dysregulate the host cellular machinery to replicate, assemble, and spread progeny viruses [2]. Recent clinical studies have shown that SARS–CoV–2 infection extraordinarily affects lymphocyte number and function [3,4,5,6]. COVID–19 delays IgG and IgM levels after symptom onset [5,6]. These clinical observations suggest that SARS–CoV–2 affects the adaptive immune system. The mechanism by which SARS–CoV–2 suppresses adaptive immunity remains unclear

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.