Abstract

The role of lipids in the host cell target membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is not clear. We do not know whether SARS-CoV-2 spike protein has any specificity in terms of lipid for membrane fusion reaction. Here, using in vitro reconstitution of membrane fusion assay and single-molecule fluorescence resonance energy transfer imaging of SARS-CoV-2 spike trimers on the surface of the virion, we have demonstrated that phosphatidylserine (PS) lipid plays a key role in SARS-CoV-2 spike-mediated membrane fusion reaction for entry. Membrane-externalized PS lipid strongly promotes spike-mediated membrane fusion and COVID-19 infection. Blocking externalized PS lipid with PS-binding protein or in the absence of PS, SARS-CoV-2 spike-mediated fusion is strongly inhibited. Therefore, PS is an important target for restricting viral entry and intervening spike, and PS interaction presents new targets for COVID-19 interventions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call