Abstract

AimAnticipating local surges in COVID-19 cases has predominantly been based on observation of increasing cases. We sought to determine if temporal trends in SARS-CoV-2 Cycle threshold (Ct) values from clinical testing were predictive of future cases.MethodsData were collected from a large, safety-net hospital in Los Angeles, California. Ct values for all SARS-CoV-2 detections by the GeneXpert system (Cepheid) between October 2020 to March 2021 were analyzed.ResultsA total of 2,114 SARS-CoV-2-positive samples were included. Cases increased dramatically in December 2020, peaking the first week of January, before returning to pre-surge numbers by mid-February. Ct values fell during this same period, with values in December and January (25.6 ± 7.8 and 27±7.9, respectively) significantly lower than those of the other months (30±9.3 to 37.7 ± 6.3). Average weekly Ct values for all patients negatively correlated with the number of tests run two weeks in the future (r= -0.74, p<0.0001), whereas Ct values for asymptomatic patients negatively correlated most strongly with total number of tests performed one month later (r= -0.88, p<0.0001). Predictive modeling using these Ct values correctly predicted whether cases would increase or decrease 65% of the time for a subsequent surge (May-July 2021).ConclusionsDuring the largest COVID-19 surge in Los Angeles to date, we observed significantly lower Ct values (representing higher levels of viral RNA) suggesting that increased transmission of COVID-19 was temporarily associated with higher viral loads. Decreasing Ct values appear to be a leading indicator for predicting future COVID-19 cases, which can facilitate improved hospital-level surge planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call