Abstract

(1) Background: RNA viruses and especially coronaviruses could act inside host cells not only by building their own proteins, but also by perturbing the cell metabolism. We show the possibility of miRNA-like inhibitions by the SARS-CoV-2 concerning for example the hemoglobin and type I interferons syntheses, hence highly perturbing oxygen distribution in vital organs and immune response as described by clinicians; (2) Hypothesis: We hypothesize that short RNA sequences (about 20 nucleotides in length) from the SARS-CoV-2 virus genome can inhibit the translation of human proteins involved in oxygen metabolism, olfactory perception and immune system. (3) Methods: We compare RNA subsequences of SARS-CoV-2 protein S and RNA-dependent RNA polymerase genes to mRNA sequences of beta-globin and type I interferons; (4) Results: RNA subsequences longer than eight nucleotides from SARS-CoV-2 genome could hybridize subsequences of the mRNA of beta-globin and of type I interferons; (5) Conclusions: Beyond viral protein production, COVID-19 might affect vital processes like host oxygen transport and immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.