Abstract
Generally, object detection on Synthetic-Aperture Radar (SAR) images is known to be more challenging than that in Electro-Optical (EO) satellite images because SAR images have non-negligible speckle noise and require extensive data pre-processing. Nevertheless, object detection in SAR images is important, as SAR imagery can be obtained under severe weather and time conditions. While many recent object detection approaches on SAR imagery focus on improving detection accuracy, few studies focus on improving processing efficiency. In fact, there are significant challenges and trade-offs to achieve both high accuracy and efficiency at the same time. In this work, we introduce SAROD, a novel efficient end-to-end object detection framework on SAR images based on Reinforcement Learning (RL) to balance the tradeoffs. Our proposed model consists of two detectors, coarse and fine-grained detectors, with an RL agent, where RL has not yet been utilized for object detection on SAR imagery. Our model was evaluated on a challenging SAR imagery dataset, achieving performance comparable to state-of-the-art detectors while maintaining high efficiency of source data usage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.