Abstract
AbstractWe prove the logarithmic Sarnak conjecture for sequences of subquadratic word growth. In particular, we show that the Liouville function has at least quadratically many sign patterns. We deduce the main theorem from a variant which bounds the correlations between multiplicative functions and sequences with subquadratically many words which occur with positive logarithmic density. This allows us to actually prove that our multiplicative functions do not locally correlate with sequences of subquadratic word growth. We also prove a conditional result which shows that if the ( $\kappa -1$ )-Fourier uniformity conjecture holds then the Liouville function does not correlate with sequences with $O(n^{t-\varepsilon })$ many words of length n where $t = \kappa (\kappa +1)/2$ . We prove a variant of the $1$ -Fourier uniformity conjecture where the frequencies are restricted to any set of box dimension less than $1$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.