Abstract

The aim of this paper is to propose a new model that improves the Damp Trend Grey Model (DTGM) with a dynamic seasonal damping factor to forecast routes passengers demand (pax) in the air transportation industry. The model is called the SARIMA Damp Trend Grey Forecasting Model (SDTGM). In the DTGM, the damp trend factor is a static smoothing factor because it does not change over time, and therefore, it cannot capture the dynamic behavior of time series data. For this reason, the modification consists in using the trend and seasonality effects of time series data to calculate a dynamic damp trend factor as time grows. The DTGM damping factor is based on the forecasted data obtained by the GM(1,1) model; otherwise, the SDTGM calculates a seasonal damping factor based on historical data using a large amount of data points for short lead-times. The SDTGM has less uncertainty than the DTGM. The simulation results show that the SDTGM captures the seasonality effect and does not allow the forecast to exponentially grow. The SDTGM forecasts more reasonable routes pax for short lead-times when having a large amount of data points than the DTGM. The United States domestic air transport market data are used to compare the performance of the DTGM against the proposed SDTGM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.