Abstract

Tropical seascapes are comprised of a range of patch habitat types, yet we have only a partial understanding of how local patch condition and seascape position may influence patterns of marine biodiversity, particularly for invertebrate taxa. We investigated how the epifaunal abundance and biomass of tropical Sargassum varied with canopy size (volume, total length and dry weight), local patch conditions (macroalgal composition, canopy structure and invertivorous fish biomass) and seascape setting (nearshore, lagoon and back reef) within the Ningaloo fringing reef ecosystem, Australia. A total of 49431 epifauna, dominated by crustaceans and molluscs, were extracted from the thalli of 81 tropical Sargassum polycystum individuals. Epifaunal abundance and biomass were most strongly correlated with host Sargassum canopy volume and dry weight, respectively. Epifaunal abundance and biomass also varied significantly among separate Sargassum meadow patches, with a significant interaction between canopy size and seascape position. Considerable site-level variations in epifaunal biomass density (mg per g Sargassum dry weight) were best predicted by either seascape context or local invertivorous fish biomass. Sargassum within meadows furthest from the back reef tended to have the highest epifaunal biomass (dominated by molluscs), while meadows closest to the back reef were dominated by crustacea. Sargassum within meadows with a high local abundance of invertivorous labrids and serranids tended to have the lowest epifaunal biomass. Strong Sargassum canopy size-epifauna relationships indicate that even small differences in canopy extent have major flow-on effects for the trophic function of tropical marine ecosystems by affecting the epifaunal secondary productivity available to higher-order consumers, such as fishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.