Abstract

We have previously shown that inhibition of the spontaneous contractile activity of cultured embryonic-chick skeletal-muscle fibres with tetrodotoxin (TTX) leads to decreased sarcoplasmic-reticulum Ca(2+)-transport rates and steady-state concentrations of the high-energy Ca(2+)-ATPase phosphoenzyme intermediate [Charuk & Holland (1983) Exp. Cell Res. 144, 143-157]. In the present study we used a monoclonal antibody to the Ca(2+)-ATPase to show that there is a decreased amount of enzyme accumulated by contraction-inhibited myotubes. Indirect immunofluorescence microscopy using the monoclonal antibody to the Ca(2+)-ATPase also revealed a disordered subcellular organization of the sarcotubular system in contraction-inhibited myotubes. The biogenesis of sarcoplasmic-reticulum proteins in TTX-paralysed myofibres was studied by labelling cells with [35S]methionine before isolation of the active Ca(2+)-pump membrane fraction. Protein turnover was selectively increased in that fraction from TTX-treated muscle cultures. Electrophoretic analysis and quantitative fluorography confirmed that decreased accumulation of the Ca(2+)-ATPase enzyme in contraction-inhibited myotubes was associated with increased turnover of this protein. The present results demonstrate that biogenesis of the sarcoplasmic-reticulum Ca(2+)-ATPase is regulated by the contractile activity of skeletal-muscle fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.