Abstract

Chloride conductance disturbances contribute to sarcolemmal dysfunction in myotonic dystrophy type 1 (DM1) and type 2 (DM2). Studies using muscle velocity recovery cycles (MVRCs) suggest Na+ /K+ -adenosine triphosphatase activation becomes defective in advanced DM1. We used MVRCs to investigate muscle excitability in DM1 and DM2. MVRCs were measured for patients with mild (n = 8) and advanced (n = 11) DM1, DM2 (n = 4), and normal controls (n = 30). Residual supernormality after multiple conditioning stimuli was increased in DM2 and advanced DM1. Advanced DM1 was distinguished by increases in muscle relative refractory period (MRRP) and reduced early supernormality as well as peak amplitude decrements for the first and last responses in train during repetitive stimulation. Prolongation of the MRRP indicates that depolarization of the resting muscle membrane potential occurs in advanced DM1, with possible implications for future therapeutic approaches. Muscle Nerve 57: 595-602, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.