Abstract

A great variety of vertebrate cells contain detecamounts of lectins, able to stimulate the initiation of cellular DNA synthesis. One of them, sarcolectin (SCL) can block interferon (IFN) action, by inhibiting the synthesis and the expression of the IFN dependent secondary proteins. As a result, the IFN-induced antiviral state is abolished in the cells, which likely facilitates their replication. We identified a major 65 kDa and a minor 55 kDa protein, which could carry these cellular functions. Their purification, especially that of the 65 kDa, was difficult, because of the proximity of albumin. We devised therefore a two-step primary separation, followed by a four-step final purification, which are reported here. The purification was controlled by high pressure liquid chromatography (HPLC), SDS-PAGE electrophoresis and identified by Western blots. We found that only the minor 55 kDa protein can be considered as being sarcolectin, while the major 65 kDa band results from the binding of some SCL molecules to albumin. The major biological functions, namely, stimulation of DNA synthesis and cell agglutination were preserved to the end of the last purification step. This work is requisite for establishing the molecular structure of SCL by recombinant DNA technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call