Abstract

Seven years (2013–2019) of the French/Indian mission SARAL altimetry data have been successfully reprocessed within the SALP contract supported by CNES to produce a new data set of GDR (Geophysical Data Record) using an updated, modern set of algorithms and models. The main objective of this article is to assess the quality of the reprocessed dataset and estimate the system’s performance using GDR-F products. To achieve this goal, the new dataset has been validated against the previous one (identified as GDR-T) using mono-mission metrics and comparisons to reference altimetry missions such as Jason-2 and Jason-3. The new data set shows a clear improvement in data quality. The product validation shows a reduction of the standard deviation of crossovers’ Sea Surface Height differences from 5.5 cm (GDR-T) to 5.2 cm (GDR-F). This paper presents the main processing changes and shows some of the results from the validation and quality-assurance processes. The major improvement of the GDR-F data set with respect to the previous one is due to the use of state-of-the-art orbit standards (POE-F) and geophysical corrections, including new tidal models, a new wet troposphere retrieval algorithm, and a new algorithm for sea state estimation. The intent of this paper is to highlight the overall benefit of this new dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call