Abstract
Synthetic aperture radar (SAR) images often interfere with speckle artifacts that have a great impact on subsequent processing and analysis operations. To remove speckle artifacts, this article introduces a hybrid denoising approach by using a convolutional neural network (CNN) and consistent cycle spinning (CCS) in the nonsubsample shearlet transform (NSST) domain. First, we apply NSST to a noisy SAR image to gain low- and high-frequency coefficients. Second, we adopt a learned deep CNN model to eliminate the speckle noise in the low-frequency coefficients, which retains more contour information. Third, we employ CCS to enhance the high-frequency coefficients, which preserves more details of the original SAR image. Finally, we obtain the denoised image by using inverse NSST applied to the denoised coefficients. Compared with state-of-the-art algorithms, the results of the experiment indicate that our method not only achieves better speckle removal performance but also maintains more detailed information retention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.