Abstract
The two-dimensional transfer functions of several synthetic aperture radar (SAR) focusing algorithms are derived considering the spaceborne SAR environments. The formulation includes the factors of the earth rotation and the antenna squint angles. The resultant transfer functions are explicitly expressed in terms of Doppler centroid frequency and Doppler frequency rate, which can be accurately estimated from the SAR data. Point target simulation results show that the algorithm based on the two-dimensional Fourier transformation outperforms the one-dimensional one for processing data acquired from high squint angles. The two-dimensional Fourier transformation approach appears to be a viable and simple solution for the processor design of future spaceborne SAR systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.