Abstract
As the number of compounds and the volume of bioactivity data rapidly grow, advanced computational methods are required to study structure-activity relationships (SARs) on a large scale. Herein, the SAR matrix (SARM) methodology is described that was designed to systematically extract structural relationships between bioactive compounds from large databases, explore structure-activity relationships, and navigate multitarget activity spaces, which is one of the core tasks in chemogenomics. In addition, the SARM approach was designed to visualize structural and structure-activity relationships, which is often of critical importance for making this information available in an intuitive form for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.