Abstract
Parallel transmission bears the potential of compensating B1 fleld inhomogeneities induced by wave propagation efiects in (ultra) high fleld whole body MR imaging. However, with increasing fleld strength, the RF power deposition and the associated local speciflc absorption rate (SAR) represent an important attention point with respect to patient safety. This paper presents simulations of a 3T whole body eight-channel transmit/receive body coil loaded with a human bio-mesh model. Phantom SAR simulations were carried out and validated by temperature measurements. A good correlation between SAR simulations and measured temperature was obtained, so that the FDTD method can be considered to be a valuable tool in determining (local) SAR for patient safety in multi-channel transmission MRI systems.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.