Abstract
In this paper, a hierarchical region merging method is proposed for partitioning synthetic aperture radar (SAR) image into un-overlapping scene area, such as forest regions, urban regions, agricultural regions, and so on. The proposed method mainly consists of two steps: initial over-segmentation and hierarchical regions merging. The over-segmentation uses the watershed transform to the thresholded Bhattacharyya-coefficient-based edge strength map (BESM), and the hierarchical regions merging applies a new region merging cost weighted by a gradually increasing orientated edge strength penalty. There is a defect that the ratio-based edge detector widely used in homogeneous SAR image fails to distinguish the transitions between uniform and texture regions in high spatial resolution SAR image, and yields an initial over-segmentation result with some regions straddling multiple uniform or texture areas. To overcome this, the Bhattacharyya coefficient is used to replace the ratio-based edge detector for extracting the ESM of a SAR image by using a bi-rectangle-window configuration. Multi-scale windows are utilized to capture additional edge information. A new region merging cost is proposed based on the Kuiper’s distance, weighted by a new gradually increasing orientated edge strength penalty term. The hierarchical region merging criterion is obtained with the increasing of the strength of the edge penalty. The effectiveness of the proposed method is demonstrated by comparing it qualitatively and quantitatively with several state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.