Abstract
Despeckling is a longstanding topic in synthetic aperture radar (SAR) imaging. Many different schemes have been proposed for the restoration of SAR images. Among the different possible strategies, the methods based on convolutional neural networks (CNNs) have shown to produce state-of-the-art results on SAR image restoration. However, to learn an effective model it is necessary to collect a large number of speckle-free SAR images for training. To bypass this problem, we propose to directly use pre-trained CNN models on additive white Gaussian noise (AWGN) and transfer them to process SAR speckle. To include such CNNs Gaussian denoisers, we use the multi-channel logarithm approach with Gaussian denoising (MuLoG). Experimental results, both on synthetic and real SAR data, show the method achieves good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.