Abstract

We propose a new approach to synthetic aperture radar (SAR) despeckling, based on the combination of multiple alternative estimates of the same data. The many despeckling methods proposed in the literature possess different and often complementary strengths and weaknesses. Given a reliable pixelwise characterization of the image, one can take advantage of this diversity by selecting the most appropriate combination of estimators for each image region. Following this paradigm, we develop a simple algorithm where only two state-of-the-art despeckling tools, characterized by complementary properties, are linearly combined. To ensure the smooth combination of contributes, thus avoiding new artifacts, we propose a novel soft classification method, where a basic estimate of homogeneity is improved through nonlocal and multiresolution processing steps. The results of a number of experiments conducted on both synthetic and real-world SAR images are very promising, thus confirming the potential of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.