Abstract

Since the current remote sensing pre-trained models trained on optical images are not as effective when applied to SAR image tasks, it is crucial to create sensor-specific SAR models with generalized feature representations and to demonstrate with evidence the limitations of optical pre-trained models in downstream SAR tasks. The following aspects are the focus of this study: pre-training, fine-tuning, and explaining. First, we collect the current large-scale open-source SAR scene image classification datasets to pre-train a series of deep neural networks, including convolutional neural networks (CNNs) and vision transformers (ViT). A novel dynamic range adaptive enhancement method and a mini-batch class-balanced loss are proposed to tackle the challenges in SAR scene image classification. Second, the pre-trained models are transferred to various SAR downstream tasks compared with optical ones. Lastly, we propose a novel knowledge point interpretation method to reveal the benefits of the SAR pre-trained model with comprehensive and quantifiable explanations. This study is reproducible using open-source code and datasets, demonstrates generalization through extensive experiments on a variety of tasks, and is interpretable through qualitative and quantitative analyses. The codes and models are open source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.