Abstract

Objectives: When detecting changes in synthetic aperture radar (SAR) images, the quality of the difference map has an important impact on the detection results, and the speckle noise in the image interferes with the extraction of change information. In order to improve the detection accuracy of SAR image change detection and improve the quality of the difference map, this paper proposes a method that combines the popular deep neural network with the clustering algorithm.Methods: Firstly, the SAR image with speckle noise was constructed, and the FFDNet architecture was used to retrain the SAR image, and the network parameters with better effect on speckle noise suppression were obtained. Then the log ratio operator is generated by using the reconstructed image output from the network. Finally, K-means and FCM clustering algorithms are used to analyze the difference images, and the binary map of change detection results is generated. Results: The experimental results have high detection accuracy on Bern and Sulzberger's real data, which proves the effectiveness of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.