Abstract

The judicious use and management of natural resources is vital to achieve sustainable development. Land and water are prime natural resources, and their depletion and degradation can lead to serious threats like land subsidence. Land subsidence is a phenomenon of the alteration of elevation at a point on the earth through the sinking of the surface. It occurs when the earth's surface loses its support. The major causes of land subsidence include groundwater extraction, mining, construction overload, and other similar factors that increase pressure on the surface and eventually subsidize the land. Urban centers with excessive groundwater extraction and infrastructure development are at a high risk of subsidence. Lahore, the second-largest city in Pakistan, is undergoing an enormous increase in population density, uncontrolled urbanization with very large-scale construction projects, and intensive groundwater extraction which are responsible for subsidence directly or indirectly. Therefore, studies on groundwater status and unplanned urban appraisals have seriously urged monitoring of the subsidence in Lahore. Herein, we used freely available Sentinel-1 data for one year (from August 2018 to August 2019), with a high spatial and temporal resolution, to monitor subsidence in Lahore. The data were processed using the SNAP/StaMPS approach for Persistent Scatterer Interferometric Synthetic Aperture Radar (PSI) analysis, which is an advanced InSAR technique. The displacement velocity map from InSAR processing shows a significant land deformation in the area with values ranging from –114 to 15 mm yr–1. Along with the Sentinel-1 data, we also used supplementary data obtained from various government agencies of Pakistan to study the land cover map, transportation network and waterways of Lahore, soil types, population density, and field points for assessing the results and understanding the roles of various factors in the occurrence of uplift or subsidence. A strong correlation was established between subsidence and various parameters such as groundwater extraction and lowering of the water table, soil type variations, land cover changes, surface water channels, and population density. The deformation map confirms the greatest subsidence in the central part of Lahore, while the uplift is observed in the less populated and rural areas situated near Ravi River. The land subsidence and uplift could be attributed to groundwater extraction and recharge through the canal system and the river, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call