Abstract

The potential of two Frankia strains to grow saprophytically was studied in nonsterile soil microcosms with ground leaf litter of Alnus glutinosa as the sole carbon and nitrogen sources. Strains Ag45/Mut15 and ArI3, which represent two taxonomic subgroups within the Alnus host infection group were inoculated alone, or together to investigate potential competition. Their growth was analyzed by in situ and dot-blot hybridization. A significant increase in cell numbers and filament length was observed during the first 6 weeks after inoculation for strain Ag45/Mut15, both alone and in mixed culture with strain ArI3, followed by a decrease until the end of the study after 12 weeks. The number of filaments remained unchanged. In contrast, the cell numbers and filament length of strain ArI3 were reduced significantly during the first 2 weeks and were undetectable for the remainder of the study. These results were comparable with those obtained in sterile mineral medium amended with leaf litter of A. glutinosa, although reductions in cell numbers and filament length were less pronounced than in soil microcosms. In concomitant control studies without leaf litter amendments for both experimental setups, filaments of both strains could only be detected immediately after inoculation. These results were matched in all experimental setups by concomitant shifts in the rRNA content of both strains, i.e., an immediate decline in the rRNA content for strain ArI3 after inoculation, and an increase in the rRNA content, followed by a late decline during incubation for strain Ag45/Mut15. These results demonstrated that Frankia strain Ag45/Mut15 could grow saprophytically in soil with complex carbon and nitrogen sources such as leaf litter, while the growth of strain ArI3 was not supported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call