Abstract

Research Article| February 01, 1985 Sapping processes and the development of theater-headed valley networks on the Colorado Plateau JULIE E. LAITY; JULIE E. LAITY 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Search for other works by this author on: GSW Google Scholar MICHAEL C. MALIN MICHAEL C. MALIN 2Department of Geology, Arizona State University, Tempe, Arizona 85287 Search for other works by this author on: GSW Google Scholar GSA Bulletin (1985) 96 (2): 203–217. https://doi.org/10.1130/0016-7606(1985)96<203:SPATDO>2.0.CO;2 Article history first online: 01 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation JULIE E. LAITY, MICHAEL C. MALIN; Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. GSA Bulletin 1985;; 96 (2): 203–217. doi: https://doi.org/10.1130/0016-7606(1985)96<203:SPATDO>2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract Ground-water sapping is an erosional process that produces landforms with unique characteristics. Sapped drainage systems differ in morphology, pattern, network spatial evolution, rate of erosion, and degree of structural control from their fluvial counterparts. Investigation of deeply entrenched theater-headed valleys in the Glen Canyon region of the Colorado Plateau indicates that ground-water sapping is the predominant mechanism of growth. The canyons occur in the Navajo Sandstone, a highly transmissive aquifer underlain by essentially impermeable rocks. Within this formation, two populations of valleys with markedly different features are identified. The first group exhibits theater heads: longitudinal profiles with high, step-like discontinuities and commonly asymmetric, structurally controlled patterns. The second group is characterized by tapered terminations; a relatively smooth, concave-up profile; and a more arborescent network. Because the valleys have developed under the same lithologic, stratigraphic, and climatic conditions, the differences in form are attributed primarily to structural constraints that determine the relative effectiveness of overland-flow and ground-water (sapping) processes. Of particular importance is the dip direction of the beds relative to that of valley growth, inasmuch as this relationship controls the occurrence and distribution of ground-water seepage at valley walls. Laterally flowing ground water also exploits fractures at depth, so that the drainage pattern of theater-headed valleys reflects that of the regional jointing pattern.Martian valleys exhibit numerous morphologic similarities to canyons formed in the Navajo Sandstone. These include theater-shaped heads, nearly constant width from source to outlet, high and steep sidewalls, hanging outlets, and a large degree of structural control. Although the constituent materials, scale, climate, structure, and ground-water conditions of Mars cannot be replicated in any Earth analog, the striking similarities in form suggest that the gross geomorphic processes may be similar and that sapping processes have operated to create the Martian valleys. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.