Abstract

Abstract: Saponins represent a category of diverse, natural glycoside molecules that belong to the triterpenoid or the steroid class. They vary in terms of their solubility and permeability characteristics and are classifiable based on the biopharmaceutics classification system. They have drug delivery potential as surfactants that can solubilize cholesterol in the plasma membrane of tumorigenic cells. Glioblastoma is an important malignancy that can aggressively afflict the brain of humans with a poor prognosis. Glioblastoma Stem Cells (GSCs), are an important subset of cancer cells and are major determinants for drug resistance and tumour relapse. These cells are quiescent and have been known to survive current therapeutic strategies. Certain saponins have shown potential to eliminate glioblastoma cells in a variety of model systems and hence provide a sound scientific basis for their development as a “stand-alone” drug or as part of a drug combination (from the existing arsenal of drugs) developed for the treatment of glioblastoma. However, due to their reactogenicity towards the immune system and hemolytic potential, selective delivery to the tumorigenic site is essential. Hence, nano-formulations (liposome/emulsion-based delivery systems/nano-structured lipid and calix[n]arenes-based carriers) and variants that are resistant to saponin may serve as delivery tools that can be functionalized to improve the selectivity. It is necessary to develop/validate/refine in vitro higher order models that replicate the features of the glioma microenvironment (BBB/BTB). Reproducible validation of the model as well as the drug/delivery system will help in the development of formulations that can augment cell death in this recalcitrant brain tumour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call