Abstract

Acetaminophen (APAP) overdose is one of the most common inducements of drug-induced liver injury (DILI) in the world. The main purpose of this paper was to investigate the liver protection activity of saponins (ginsenosides) from the leaves of Panax quinquefolius (PQS) against APAP-induced hepatotoxicity, and the involved mechanisms were demonstrated for the first time. Mice were pretreated with PQS (150 and 300 mg/kg) by oral gavage for 7 days before being treated with 250 mg/kg APAP. Severe liver injury was exerted at 24 h post-APAP, and hepatotoxicity was assessed. Our results showed that pretreatment with PQS significantly decreased the serum alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β) levels in a dose-dependent manner as compared to the APAP administration. Meanwhile, compared with that in the APAP group, PQS decreased hepatic malondialdehyde (MDA) contents and 4-hydroxynonenal (4-HNE) expression and restored reduced glutathione (GSH) content and superoxide dismutase (SOD) activity in livers of mice. PQS inhibited the overexpression of pro-inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the liver tissues. Furthermore, Western blotting analysis revealed that PQS pretreatment inhibited the activation of apoptotic signaling pathways via increase of Bcl-2 and decrease of Bax and caspase-3 protein expression levels. Liver histopathological observation provided further evidence that PQS pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration, and congestion. Biological indicators of nitrative stress such as 3-nitrotyrosine (3-NT) were inhibited after PQS pretreatment, compared to the APAP group. The present study clearly demonstrates that PQS exerts a protective effect against APAP-induced hepatic injury because of its antioxidant, anti-apoptotic, and anti-inflammatory activities. The findings from the present investigation show that PQS might be a promising candidate treatment agent against drug-induced ALI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.