Abstract

Synaptic transmission mediated by AMPA-type glutamate receptors (AMPARs) is regulated by scaffold proteins in the postsynaptic density. SAP90/PSD-95-associated protein 3 (SAPAP3) is a scaffold protein that is highly expressed in striatal excitatory synapses. While loss of SAPAP3 is known to cause obsessive-compulsive disorder-like behaviors in mice and reduce extracellular field potentials in the striatum, the mechanism by which SAPAP3 regulates excitatory neurotransmission is largely unknown. This study demonstrates that Sapap3 deletion reduces AMPAR-mediated synaptic transmission in striatal medium spiny neurons (MSNs) through postsynaptic endocytosis of AMPARs. Striatal MSNs in Sapap3 KO mice have fewer synapses with AMPAR activity and a higher proportion of silent synapses. We further find that increased metabotropic glutamate receptor 5 (mGluR5) activity in Sapap3 KO mice underlies the decrease in AMPAR synaptic transmission and excessive synapse silencing. These findings suggest a model whereby the normal role of SAPAP3 is to inhibit mGluR5-driven endocytosis of AMPARs. The results of this study provide the first evidence for the mechanism by which the SAPAP family of scaffold proteins regulates AMPAR synaptic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.