Abstract
Sap-1/PTPRH, a receptor protein tyrosine phosphatase (RPTP), is a ubiquitously expressed enzyme that is upregulated in human gastrointestinal cancers. Using both chemical cross-linkers and co-immunoprecipitation we show that overexpressed full-length Sap-1 is present as a stable homodimer. Unlike a number of adhesion RPTPs which have tandem catalytic domains that are involved in dimerization, Sap-1 has a single catalytic domain, and we show that this domain is not required for Sap-1 dimerization, which is mediated instead by the large extracellular and transmembrane domains. Exposing cells that express the receptor to a reducing environment reversibly disrupts the Sap-1 dimer, suggesting that cysteine bonds play a role in dimer formation/stabilization. The switch between Sap-1 dimers and monomers is accompanied by an increase in catalytic activity as judged by its capacity to dephosphorylate and activate c-src, which we identify as a novel substrate for this phosphatase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.