Abstract

Botanical biofilters have been proposed as an effective technology for indoor air remediation. Plants, including Sansevieria trifasciata and Chlorophytum comosum, which remove VOCs effectively, can also reduce CO2 emission since S. trifasciata and C. comosum are CAM and C3 plant species, respectively. Therefore, a botanical biofilter using these plants together shows potential for use in contaminated sites. Herein, the potential of this mixed plant botanical biofilter was evaluated as a method of phytoremediation for multi-pollutants from cigarette smoke. The results showed that the combination of S. trifasciata and C. comosum in a botanical biofilter was highly effective in removing VOCs and PM2.5. In addition, this botanical biofilter can also successfully remove formaldehyde, acetone, benzene, and xylene, with low CO2 emission under indoor conditions of moderate light intensity (50 μmole PAR m−2 s−1). The system was also installed in a large volume room (24 m3) to test phytoremediation of multi-pollutants from cigarette smoke. The results showed that this mixed plant botanical biofilter can remediate indoor air pollution effectively under both light and dark conditions continuously for three cycles. The mixed plant botanical biofilter developed showed potential for use in real contamination sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call