Abstract

PurposeThis paper aims to address the following issues: (1) most existing methods are based on recurrent network, which is time-consuming to train long sequences due to not allowing for full parallelism; (2) personalized preference generally are not considered reasonably; (3) existing methods rarely systematically studied how to efficiently utilize various auxiliary information (e.g. user ID and time stamp) in trajectory data and the spatiotemporal relations among nonconsecutive locations.Design/methodology/approachThe authors propose a novel self-attention network–based model named SanMove to predict the next location via capturing the long- and short-term mobility patterns of users. Specifically, SanMove uses a self-attention module to capture each user's long-term preference, which can represent her personalized location preference. Meanwhile, the authors use a spatial-temporal guided noninvasive self-attention (STNOVA) module to exploit auxiliary information in the trajectory data to learn the user's short-term preference.FindingsThe authors evaluate SanMove on two real-world datasets. The experimental results demonstrate that SanMove is not only faster than the state-of-the-art recurrent neural network (RNN) based predict model but also outperforms the baselines for next location prediction.Originality/valueThe authors propose a self-attention-based sequential model named SanMove to predict the user's trajectory, which comprised long-term and short-term preference learning modules. SanMove allows full parallel processing of trajectories to improve processing efficiency. They propose an STNOVA module to capture the sequential transitions of current trajectories. Moreover, the self-attention module is used to process historical trajectory sequences in order to capture the personalized location preference of each user. The authors conduct extensive experiments on two check-in datasets. The experimental results demonstrate that the model has a fast training speed and excellent performance compared with the existing RNN-based methods for next location prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.