Abstract

AbstractSANISAND is the name used for a family of simple anisotropic sand constitutive models developed over the past few years within the framework of critical state soil mechanics and bounding surface plasticity. The existing SANISAND models use a narrow open cone‐type yield surface with apex at the origin obeying rotational hardening, which implies that only changes of the stress ratio can cause plastic deformations, while constant stress‐ratio loading induces only elastic response. In order to circumvent this limitation, the present member of the SANISAND family introduces a modified eight‐curve equation as the analytical description of a narrow but closed cone‐type yield surface that obeys rotational and isotropic hardening. This modification enables the prediction of plastic strains during any type of constant stress‐ratio loading, a feature lacking from the previous SANISAND models, without losing their well‐established predictive capability for all other loading conditions including the cyclic. In the process the plausible assumption is made that the plastic strain rate decomposes in two parts, one due to the change of stress ratio and a second due to loading under constant stress ratio, with isotropic hardening depending on the volumetric component of the latter part only. The model formulation is presented firstly in the triaxial stress space and subsequently its multiaxial generalization is developed following systematically the steps of the triaxial one. A detailed calibration procedure for the model constants is presented, while successful simulation of both drained and undrained behavior of sands under constant and variable stress‐ratio loadings at various densities and confining pressures is obtained by the model. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.